Direct Imaging of Nanoscale Conductance Evolution in Ion-Gel-Gated Oxide Transistors.

نویسندگان

  • Yuan Ren
  • Hongtao Yuan
  • Xiaoyu Wu
  • Zhuoyu Chen
  • Yoshihiro Iwasa
  • Yi Cui
  • Harold Y Hwang
  • Keji Lai
چکیده

Electrostatic modification of functional materials by electrolytic gating has demonstrated a remarkably wide range of density modulation, a condition crucial for developing novel electronic phases in systems ranging from complex oxides to layered chalcogenides. Yet little is known microscopically when carriers are modulated in electrolyte-gated electric double-layer transistors (EDLTs) due to the technical challenge of imaging the buried electrolyte-semiconductor interface. Here, we demonstrate the real-space mapping of the channel conductance in ZnO EDLTs using a cryogenic microwave impedance microscope. A spin-coated ionic gel layer with typical thicknesses below 50 nm allows us to perform high resolution (on the order of 100 nm) subsurface imaging, while maintaining the capability of inducing the metal-insulator transition under a gate bias. The microwave images vividly show the spatial evolution of channel conductance and its local fluctuations through the transition as well as the uneven conductance distribution established by a large source-drain bias. The unique combination of ultrathin ion-gel gating and microwave imaging offers a new opportunity to study the local transport and mesoscopic electronic properties in EDLTs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Printed Sub-2 V Gel-Electrolyte-Gated Polymer Transistors and Circuits

The fabrication and characterization of printed ion-gel-gated poly(3hexylthiophene) (P3HT) transistors and integrated circuits is reported, with emphasis on demonstrating both function and performance at supply voltages below 2 V. The key to achieving fast sub-2 V operation is an unusual gel electrolyte based on an ionic liquid and a gelating block copolymer. This gel electrolyte serves as the ...

متن کامل

Organic Thin Film Transistors with Polyvinylpyrrolidone / Nickel Oxide Sol-Gel Derived Nanocomposite Insulator

Polyvinylpyrrolidone  /  Nickel  oxide  (PVP/NiO)  dielectrics  were fabricated  with  sol-gel  method  using  0.2  g  of  PVP  at  different working  temperatures  of  80,  150  and  200  ºC.  Structural  properties and surface morphology of the hybrid films were investigated by X- Ray  diffraction  (XRD)  and  Scanning  Electron Microscope  (SEM) respectively. Energy dispersive X-ray spec...

متن کامل

The impact of defect scattering on the quasi-ballistic transport of nanoscale conductors

Articles you may be interested in High-field transport in a graphene nanolayer Effects of dimensionality on the ballistic phonon transport and thermal conductance in nanoscale structures Experimental evidence of ballistic transport in cylindrical gate-all-around twin silicon nanowire metal-oxide-semiconductor field-effect transistors Appl. Using the Landauer approach for carrier transport, we a...

متن کامل

Carbohydrate-actuated nanofluidic diode: switchable current rectification in a nanopipette.

Nanofluidic structures share many properties with ligand-gated ion channels. However, actuating ion conductance in artificial systems is a challenge. We have designed a system that uses a carbohydrate-responsive polymer to modulate ion conductance in a quartz nanopipette. The cationic polymer, a poly(vinylpyridine) quaternized with benzylboronic acid groups, undergoes a transition from swollen ...

متن کامل

Learning and Spatiotemporally Correlated Functions Mimicked in Oxide-Based Artificial Synaptic Transistors

Learning and logic are fundamental brain functions that make the individual to adapt to the environment, and such functions are established in human brain by modulating ionic fluxes in synapses. Nanoscale ionic/electronic devices with inherent synaptic functions are considered to be essential building blocks for artificial neural networks. Here, Multi-terminal IZO-based artificial synaptic tran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nano letters

دوره 15 7  شماره 

صفحات  -

تاریخ انتشار 2015